Product usage

Before using this product, please read the Limited Use statement below

Important Limited Use information for pNiFty3-I-Fluc-Puro

The purchase of the pNiFty3-I-Fluc-Puro vector conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for-profit entity). The buyer cannot sell or otherwise transfer (a) this product (b) its components or (c) materials made using this product or its components to a third party or otherwise use this product or its components or materials made using this product or its components for Commercial Purposes.

The buyer may transfer information or materials made through the use of this product to a scientific collaborator, provided that such transfer is not for any Commercial Purpose, and that such collaborator agrees in writing (a) not to transfer such materials to any third party, and (b) to use such transferred materials and/or information solely for research and not for Commercial Purposes.

Commercial Purposes means any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components to provide a service, information, or data; (3) use of the product or its components for therapeutic, diagnostic, or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components are resold for use in research.

If the purchaser is unwilling to accept the limitations of this limited use statement, InvivoGen is willing to accept return of the product with a full refund. The product must be returned in resaleable condition. For information on purchasing a license to this product for purposes other than research, contact us at outlicensing@invivogen.com.

pNiFty3-I-Fluc-Puro
 IRF-inducible reporter plasmid selectable with Puromycin
 Catalog code: pnf3p-fluc4
 https://www.invivogen.com/pnifty3-family-puro
 For research use only
 Version 23H16-AK

PRODUCT INFORMATION

Contents

- $20 \mu \mathrm{~g}$ of lyophilized pNiFty3-I-Fluc-Puro (plasmid DNA)
- 1 ml of Puromycin ($10 \mathrm{mg} / \mathrm{ml}$)

Storage and Stability

- Product is shipped at room temperature.
- Lyophilized DNA should be stored at $-20^{\circ} \mathrm{C}$.
- Resuspended DNA is stable for 1 year at $-20^{\circ} \mathrm{C}$.
- Store Puromycin at $4^{\circ} \mathrm{C}$ or $-20^{\circ} \mathrm{C}$. The expiry date is specified on the product label.

Quality control

- Plasmid construct is confirmed by restriction analysis and full-length open reading frame (ORF) sequencing.
- After purification by ion exchange chromatography, predominant supercoiled conformation is verified by electrophoresis.

PLASMID FEATURES

- ISRE-5x IFN- β is an engineered murine interferon beta (mIFN- β) promoter comprising different positive regulatory domains that bind transcription factors such as NF-кB, IRF3 and IRF71. This minimal promoter is truly IRF-specific due to the addition of several interferonstimulated response elements (ISRE) repeated transcription factor binding sites (TFBS) (AGTTTCNNTTTCC) ${ }^{2}$. This feature also enhances the IRF-mediated transcription of the Fluc reporter gene.
- Fluc: The firefly luciferase (Fluc) gene encodes for an intracellular (non secreted) luciferase of fireflies and click beatles. This enzyme interacts with D-luciferin as a chemiluminescent substrate to produce light emission peaking at 560 nm . After cell lysis, the reaction can be measured and detected simply, rapidly and with good sensitivity by means of a luminescence-measuring instrument.
- SV40 pAn is the Simian Virus 40 late polyadenylation (pAn) signal and it enables efficient cleavage and polyadenylation reactions resulting in high levels of steady-state mRNA ${ }^{3}$.
- Ori is a minimal E. coli origin of replication with the same activity as the longer Ori.
- EF-1 $\alpha /$ HTLV hybrid promoter is a composite promoter comprising the Elongation Factor-1 α (EF-1 α) core promoter ${ }^{4}$ and the R segment and part of the U5 sequence (R-U5') of the Human T-Cell Leukemia Virus (HTLV) Type 1 Long Terminal Repeat5. The EF-1 α promoter exhibits a strong activity and yields long lasting expression of a transgene in vivo. The R-U5' has been coupled to the EF- 1α core promoter to enhance stability of DNA and RNA. This modification not only increases steady state transcription, but also significantly increases translation efficiency.

Puromycin antibiotic selection cassette

- CMV promotor \& enhancer drives the expression of the Puromycin resistance gene (Pac) in mammalian cells.
- EM7 is a bacterial promoter that enables the constitutive expression of the Pac gene in E. coli.
- Puro (resistance to the antibiotic Puromycin) is conferred by the Pac gene from Streptomyces which encodes a N -acetyl-transferase. The Pac gene is driven by the EF1-HTLV promoter in tandem with the bacterial EM7 promoter allowing selection in both mammalian cells and E. coli.
- Human β-Globin pAn is a strong polyadenylation (pAn) signal placed downstream of Pac. The use of β-globin pAn minimizes interference and possible recombination events with the SV40 pAn signal6.

PRODUCT INFORMATION

InvivoGen has designed pNiFty3, a collection of inducible reporter plasmids, to monitor pattern recognition receptor (PRR) activation and cytokine signaling upon ligand stimulation. The pNiFty3-I-Fluc-Puro plasmid features an IRF-inducible Firefly luciferase (Fluc) reporter gene under the control of an engineered mIFN- β promoter. This promoter comprises several ISRE repeated TFBS to enhance the IRF-specific transcription. The subsequent expression of Fluc can be measured and detected simply, rapidly and with good sensitivity by means of a luminescence-measuring instrument. Of note, the Firefly luciferase remains intracellular, and requires cell lysis in order to measure bioluminescence. The pNiFty3-I-Fluc-Puro plasmid is selectable with Puromycin in both E. coli and mammalian cells, and can be used to generate stable clones.

METHODS

- Plasmid resuspension
- Quickly spin the tube to pellet the DNA.
- To obtain a plasmid solution at $1 \mu \mathrm{~g} / \mathrm{\mu l}$, resuspend the DNA in $20 \mu \mathrm{l}$ of sterile water. Store the resuspended plasmid at $-20^{\circ} \mathrm{C}$.
- Plasmid amplification and cloning

Plasmid amplification and cloning can be performed in E. coli GT115 or other commonly used laboratory E. coli strains, such as DH5 α.

- Puromycin usage

Puromycin can be used at $100-125 \mu \mathrm{~g} / \mathrm{ml}$ in E. coli in liquid or solid media and at $1-10 \mu \mathrm{~g} / \mathrm{ml}$ to select Puromycin-resistant mammalian cells.

RELATED PRODUCTS

Product	Description	Cat. Code
Puromycin	Selection antibiotic	ant-zn-1
pNiFty3-I-Fluc-Blasti	Reporter plasmid	pnf3b-fluc4
pNiFty3-I-Fluc-Zeo	Reporter plasmid	pnf3-fluc4

1. Vodjdani G. et al., 1988. J Mol Biol. 204(2):221-31. 2. Wesoly J. et al., 2007. Acta Biochim Pol. 54(1):27-38 3. Carswell S. \& Alwine J., 1989. Mol Cell Biol. 9(10):424858. 4. Kim D. et al., 1990. Gene 91 (2): 217-223. 5. Takebe Y. et al., 1988. Mol. Cell Biol. 1: 466-472. 6. Yu J. \& Russell J., 2001. Mol Cell Biol, 21(17):5879-88.

TECHNICAL SUPPORT
InvivoGen USA (Toll-Free): 888-457-5873
InvivoGen USA (International): +1 (858) 457-5873

Sgfl (168)

101 TAGCAAAATAGGCTGTCCCCAGTGCAAGTGCAGGTGCCAGAACATTTCTCTATCGAAGGATCTGCGATCGCTGAATTAGTTTCACTTTCCAGTTTCAGTT

Sdal (254)
 EcoRV (246)

201 TCCAGTTTCATTTTCCAGTTTCATTTTCCAGTTTCATTTTCCTGATATCCTGCAGGagcttgaataaaatgaatattagaagctgttagaataagagaaa
301 atgacagaggaAAACTGAAAGGgAGAACTGAAAGTGggaaattcctctgaggcagaaaggaccatccctTATAAAtagcacaggccatgaaggaagatca

HindIII (439)

Ncol (491)
401 ttctcactgcagcctttgacagcctttgcctcatcttgAAGCTTCTGCCTTCTCCCTCCTGTGAGTTTGGTTGGTGTACAGTAGCTTCCACCATGGAGGA 1. M E D

501 TGCCAAGAATATTAAGAAAGGCCCTGCCCCATTCTACCCTCTGGAAGATGGCACTGCTGGTGAGCAACTGCACAAGGCCATGAAGAGGTATGCCCTGGTC
3* A K N I K K G P A P F Y P L E D G T A G E 601 CCTGGCACCATTGCCTTCACTGATGCTCACATTGAGGTGGACATCACCTATGCTGAATACTTTGAGATGTCTGTGAGGCTGGCAGAAGCCATGAAAAGAT
 701 ATGGACTGAACACCAACCACAGGATTGTGGTGTGCTCTGAGAACTCTCTCCAGTTCTTCATGCCTGTGTTAGGAGCCCTGTTCATTGGAGTGGCTGTGGC 70. Y G L N T N H R I V V C S E N S L Q F F M P V L G A L F I G V A V A Sacl (833)
801 CCCTGCCAATGACATCTACAATGAGAGAGAGCTCCTGAACAGCATGGGCATCAGCCAGCCAACTGTGGTCTTTGTGAGCAAGAAGGGCCTGCAAAAGATC
 901 CTGAATGTGCAGAAGAAGCTGCCCATCATCCAGAAGATCATCATCATGGACAGCAAGACTGACTACCAGGGCTTCCAGAGCATGTATACCTTTGTGACCA 137• L N V $Q \quad K \quad K \quad L \quad P \quad$ I I Q K I I I M D 1001 GCCACTTACCCCCTGGCTTCAATGAGTATGACTTTGTGCCTGAGAGCTTTGACAGGGACAAGACCATTGCTCTGATTATGAACAGCTCTGGCTCCACTGG 170. S H L P P G F N E Y D F V P E S F D R D K T I A L I M 1101 ACTGCCCAAAGGTGTGGCTCTGCCCCACAGAACTGCTTGTGTGAGATTCAGCCATGCCAGAGACCCCATCTTTGGCAACCAGATCATCCCTGACACTGCC 203. L P K G V A L P H R T A C V R F Acc65I (1253)
1201 ATCCTGTCTGTGGTTCCATTCCATCATGGCTTTGGCATGTTCACAACACTGGGGTACCTGATCTGTGGCTTCAGAGTGGTGCTGATGTATAGGTTTGAGG 237. I L S V V P F H H G F G M F T T L G Y L I C G F R V V L M 1301 AGGAGCTGTTTCTGAGGAGCCTACAAGACTACAAGATCCAGTCTGCCCTGCTGGTGCCCACTCTGTTCAGCTTCTTTGGCCAAGAGCACCCTCATTGACAA
 1401 GTATGACCTGAGCAACCTGCATGAGATTGCCTCTGGAGGAGCACCCCTGAGCAAGGAGGTGGGTGAGGCTGTGGCAAAGAGGTTCCATCTCCCAGGAATC 303. Y D L S N L H E I A S G G A P L S K E V G E A V A 1501 AGACAGGGCTATGGCCTGACTGAGACCACCTCTGCCATCCTCATCACCCCTGAAGGAGATGACAAGCCTGGTGCTGTGGGCAAGGTGGTTCCCTTTTTTTG 337. R Q G Y G L T E T T S A I L I T P E G D D K P G A V G K V V P 1601 AGGCCAAGGTGGTGGACCTGGACACTGGCAAGACCCTGGGAGTGAACCAGAGGGGTGAGCTGTGTGTGAGGGGTCCCATGATCATGTCTGGCTATGTGAA
 1701 CAACCCTGAGGCCACCAATGCCCTGATTGACAAGGATGGCTGGCTGCACTCTGGTGACATTGCCTACTGGGATGAGGATGAGCACTTTTTCATTGTGGAC 403. N P E A T N A L I D K D G W L H S G D I A Y W D 1801 AGGCTGAAGAGCCTCATCAAGTACAAAGGCTACCAAGTGGCACCTGCTGAGCTAGAGAGCATCCTGCTCCAGCACCCCAACATCTTTGATGCTGGTGTGG
 1901 CTGGCCTGCCTGATGATGATGCTGGAGAGCTGCCTGCTGCTGTTGTGGTTCTGGAGCATGGAAAGACCATGACTGAGAAGGAGATTGTGGACTATGTGGC 470. A G L P D D D A G E L P A A V V V L E H G K T M T BstEII (2007)
2001 CAGTCAGGTGACCACTGCCAAGAAGCTGAGGGGAGGTGTGGTGTTTGTGGATGAGGTGCCAAAGGGTCTGACTGGCAAGCTGGATGCCAGAAAGATCAGA 503. S Q V T T A K K L R G G V V F V D E V P K G L T G K L D A Nhel (2152)
2101 GAGATCCTGATCAAGGCCAAGAAGGGTGGCAAAATTGCTGTGTAAACCTGAGCTAGCTGGCCAGACATGATAAGATACATTGATGAGTTTGGACAAACCA 537. E I L I K A K K G G K I A V •

Hpal (2292)
2201 CAACTAGAATGCAGTGAAAAAAATGCTTTATTTGTGAAATTTGTGATGCTATTGCTTTATTTGTAACCATTATAAGCTGCAATAAACAAGTTAACAACAA

EcoRI (2386)

2301 CAATTGCATTCATTTTATGTTTCAGGTTCAGGGGGAGGTGTGGGAGGTTTTTTAAAGCAAGTAAAACCTCTACAAATGTGGTATGGAATTCTAAAATACA
2401 GCATAGCAAAACTTTAACCTCCAAATCAAGCCTCTACTTGAATCCTTTTCTGAGGGATGAATAAGGCATAGGCATCAGGGGCTGTTGCCAATGTGCATTA
2501 GCTGTTTGCAGCCTCACCTTCTTTCATGGAGTTTAAGATATAGTGTATTTTCCCAAGGTTTGAACTAGCTCTTCATTTCTTTATGTTTTAAATGCACTGA
2601 CCTCCCACATTCCCTTTTTTAGTAAAATATTCAGAAATAATTTAAATACATCATTGCAATGAAAATAAATGTTTTTTTATTAGGCAGAATCCAGATGCTCAA
2701 GGCCCTTCATAATATCCCCCAGTTTAGTAGTTGGACTTAGGGAACAAAGGAACCTTTAATAGAAATTGGACAGCAAGAAAGCGAGCTTCTAGCTCAGGTT

```
2 8 0 1 ~ T A A G C T C C A G G C T T C C T T G T C A T G C A C C A A G T T C T T G G G C C T T C T G G A A C C T C A A C A T C A G C T G T C A C A G T G A A T C C C A G T C T T T C A T A A A A A G G C A G G T ~
```



```
2 9 0 1 ~ T T C T G G G A G C A G A A G T T T C C A G A A A G G C A G G A A C T C C A G C C C T T T C A G C A G C T T C A A C T C C A G G C A G A A C A A C A G C A G A T C C C A G A C C C T T T C C C T G G T G ~
```



```
3 0 0 1 ~ G T C A G G G C T C A C T C C A A C A G T T G C C A G A A A C C A A G C T G G C T C T T T T G G C C T G T G T G G T G C C A G C A G A C C T T C C A T T T G T T G T T G T G C T G C C A G C C T G C T T ~
```



```
    Sacl (3110)
3 1 0 1 ~ C C A G A G A G C T C A G C C A T T C T T G G T C C A A T T T C A G C A A A A A C A G C A C C A G C T T C A A C A G A C T C A G G T G T T G T C C A A A C T G C A A C A G C A G C T C C A T C A T C T G ~
```



```
3201 CAACCCAAACTTTTCCAATGTCCAGTCCCACTCTGGTGAGGAAGAGTTCTTGCAGTTCTGTCACCCTCTCAATGTGCCTGTCAGGGTCAACTGTGTGCCT
```



```
3 3 0 1 ~ T G T T G C A G G G T A G T C T G C A A A A G C A G C A G C C A G T G T T C T C A C A G C T C T T G G A A C A T C A T C T C T G G T T G C C A G C C T C A C T G T G G G T T T G T A C T C A G T C A T G ~
```



```
                Asel (3455)
3 4 0 1 ~ G T G G C C C T C C T A T A G T G A G T C G T A T T A T A C T A T G C C G A T A T A C T A T G C C G A T G A T T A A T T G T C A A C T A C T G T T T G T A G G C G C C G G T C A C A G C T T G G A T C T ~
        \longleftarrow<<⿴⿱冂一⿱一一厶儿
3 5 0 1 ~ G T A A C G G C G C A G A A C A G A A A A C G A A A C A A A G A C G T A G A G T T G A G C A A G C A G G G T C A G G C A A A G C G T G G A G A G C C G G C T G A G T C T A G G T A G G C T C C A A G G G ~
3 6 0 1 ~ A G C G C C G G A C A A A G G C C C G G T C T C G A C C T G A G C T T T A A A C T T A C C T A G A C G G C G G A C G C A G T T C A G G A G G C A C C A C A G G C G G G A G G C G G C A G A A C G C G A C ~
HindIII (3768)
3 7 0 1 ~ T C A A C C G G C G T G G A T G G C G G C C T C A G G T A G G G C G G C G G G C G C G T G A A G G A G A G A T G C G A G C C C C T C G A A G C T T C A G C T G T G T T C T G G C G G C A A A C C C G T T ~
    Psp1406I (3811)
3 8 0 1 ~ G C G A A A A A G A A C G T T C A C G G C G A C T A C T G C A C T T A T A T A C G G T T C T C C C C C A C C C T C G G G A A A A A G G C G G A G C C A G T A C A C G A C A T C A C T T T C C C A G T T T ~
\begin{tabular}{|c|c|}
\hline & Agel（3924）BspLU11 \\
\hline 3901 & ACCCCGCGCCACCTTCTCTAGGCACCGGTTCAATTGCCGACCCCTCCCCCCAACTTCTCGGGGACTGTGGGCGATGTGCGCTCTGCCCACTGACACATGT \\
\hline 4001 & GAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGGCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACG \\
\hline 4101 & CTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCGCTCTCCTGTTCCGACCCTGCCGCTT \\
\hline 4201 & ACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCGTGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAGC \\
\hline 4301 & TGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACT \\
\hline 4401 & GGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGAACA \\
\hline 4501 & GTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTT \\
\hline 4601 & TTGTTTGCAAGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACG \\
\hline
\end{tabular}
```


Notl（4745）

```
4701 TTAAGGGATTTTGGTCATGGCTAGTTAATTAACATTTAAATCAGCGGCCGC
```

